60 research outputs found

    Response of the Ross Ice Shelf, Antarctica, to ocean gravity-wave forcing

    Get PDF
    Author Posting. © International Glaciological Society, 2012. This article is posted here by permission of International Glaciological Society for personal use, not for redistribution. The definitive version was published in Annals of Glaciology 53 (2012): 163-172, doi:10.3189/2012AoG60A058.Comparison of the Ross Ice Shelf (RIS, Antarctica) response at near-front seismic station RIS2 with seismometer data collected on tabular iceberg B15A and with land-based seismic stations at Scott Base on Ross Island (SBA) and near Lake Vanda in the Dry Valleys (VNDA) allows identification of RIS-specific signals resulting from gravity-wave forcing that includes meteorologically driven wind waves and swell, infragravity (IG) waves and tsunami waves. The vibration response of the RIS varies with season and with the frequency and amplitude of the gravity-wave forcing. The response of the RIS to IG wave and swell impacts is much greater than that observed at SBA and VNDA. A spectral peak at near-ice-front seismic station RIS2 centered near 0.5 Hz, which persists during April when swell is damped by sea ice, may be a dominant resonance or eigenfrequency of the RIS. High-amplitude swell events excite relatively broadband signals that are likely fracture events (icequakes). Changes in coherence between the vertical and horizontal sensors in the 8-12 Hz band from February to April, combined with the appearance of a spectral peak near 10 Hz in April when sea ice damps swell, suggest that lower (higher) temperatures during austral winter (summer) months affect signal propagation characteristics and hence mechanical properties of the RIS.Support for this study for P.B. from the California Department of Boating andWaterways, US National Oceanic and Atmospheric Administration (NOAA) grant NA10OAR4310121 and US National Science Foundation grant OCE1030022 is gratefully acknowledged. Support for R.S. was provided by the Edward W. and Betty J. Scripps Chair for Excellence in Oceanography at Woods Hole Oceanographic Institution.2013-05-0

    Are deep-ocean-generated surface-wave microseisms observed on land?

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 118 (2013): 3610–3629, doi:10.1002/jgrb.50268.Recent studies attribute land double-frequency (DF) microseism observations to deep water generation. Here we show that near-coastal generation is generally the dominant source region. This determination is based on observations at land and ocean seismic stations, buoys, gravity-wave hindcasts, and on beamforming results from continental seismic arrays. Interactions between opposing ocean wave components generate a pressure excitation pulse at twice the ocean wave frequency that excites pseudo-Rayleigh (pRg) wave DF microseisms. pRg generated in shallow coastal waters have most of their energy in the solid Earth (“elastic” pRg) and are observed by land-based and seafloor seismometers as DF microseisms. pRg generated in the deep ocean have most of their energy in the ocean (“acoustic” pRg) and are continuously observed on the ocean bottom, but acoustic pRg does not efficiently transition onto continents. High-amplitude DF signals over the [0.2, 0.3] Hz band observed on the deep seafloor are uncorrelated with continental observations and are not clearly detectable at individual continental stations or by land seismic-array beamforming. Below 0.2 Hz, modeling and some observations suggest that some deep water-generated elastic pRg energy can reach continental stations, providing that losses from scattering and transition across the continental-shelf boundary to the shore are not substantial. However, most observations indicate that generally little deep-ocean-generated DF microseism energy reaches continental stations. Effectively, DF land observations are dominated by near-coastal wave activity.This work was supported by NSF grant OCE-1030022, the California Department of Boating and Waterways, NOAA grant NA10OAR4310121, and the Edward W. and Betty J. Scripps Chair for Excellence in Oceanography at WHOI (RAS).2014-01-2

    Mid-ocean microseisms

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q04009, doi:10.1029/2004GC000768.The Hawaii-2 Observatory (H2O) is an excellent site for studying the source regions and propagation of microseisms since it is located far from shorelines and shallow water. During Leg 200 of the Ocean Drilling Program, the officers of the JOIDES Resolution took wind and wave measurements for comparison with double-frequency (DF) microseism data collected at nearby H2O. The DF microseism band can be divided into short period and long period bands, SPDF and LPDF, respectively. Comparison of the ship’s weather log with the seismic data in the SPDF band from about 0.20 to 0.45 Hz shows a strong correlation of seismic amplitude with wind speed and direction, implying that the energy reaching the ocean floor is generated locally by ocean gravity waves. Near-shore land seismic stations see similar SPDF spectra, also generated locally by wind seas. At H2O, SPDF microseism amplitudes lag sustained changes in wind speed and direction by several hours, with the lag increasing with wave period. This lag may be associated with the time necessary for the development of opposing seas for DF microseism generation. Correlation of swell height above H2O with the LPDF band from 0.085 to 0.20 Hz is often poor, implying that a significant portion of this energy originates at distant locations. Correlation of the H2O seismic data with NOAA buoy data, with hindcast wave height data from the North Pacific, and with seismic data from mainland and island stations, defines likely source areas of the LPDF signals. Most of the LPDF energy at H2O appears to be generated by high amplitude storm waves impacting long stretches of coastline nearly simultaneously, and the Hawaiian Islands appear to be a significant source of LPDF energy in the North Pacific when waves arrive from particular directions. The highest DF levels observed at mid-ocean site H2O occur in the SPDF band when two coincident nearby storm systems develop. Mid-ocean generated DF microseisms are not observed at interior continental sites, indicating high attenuation of these signals. At near-coastal seismic stations, both SPDF and LPDF microseism levels are generally dominated by local generation at nearby shorelines.This work was supported by the U.S. Science Support Program (User Reference: 418920-BA372; Task Order F001602) associated with the Ocean Drilling Program and is sponsored by the National Science Foundation and the Joint Oceanographic Institutions, Inc. Additional support was provided by the California Energy Commission and the California Department of Boating and Waterways as part of their program to improve boating facilities, access, safety, and education. Support for Ralph Stephen was also provided by the National Science Foundation under Grant #OCE-0424633

    Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Anthony, R. E., Chaput, J., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf. Journal of Glaciology, 65(254), (2019): 912-925, doi:10.1017/jog.2019.64.The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151 and 1246416. JC was additionally supported by Yates funds in the Colorado State University Department of Mathematics. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107. We thank Reinhard Flick and Patrick Shore for their support during field work, Tom Bolmer in locating stations and preparing maps, and the US Antarctic Program for logistical support. The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data collected are available through the IRIS Data Management Center under RIS and DRIS network code XH. The PSD-PDFs presented in this study were processed with the IRIS Noise Tool Kit (Bahavar and others, 2013). The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1261681 and the DOE National Nuclear Security Administration. The authors appreciate the support of the University of Wisconsin-Madison Automatic Weather Station Program for the data set, data display and information; funded under NSF grant number ANT-1543305. The Ross Ice Shelf profiles were generated using the Antarctic Mapping Tools (Greene and others, 2017). Regional maps were generated with the Generic Mapping Tools (Wessel and Smith, 1998). Topography and bathymetry data for all maps in this study were sourced from the National Geophysical Data Center ETOPO1 Global Relief Model (doi:10.7289/V5C8276M). We thank two anonymous reviewers for suggestions on the scope and organization of this paper

    A Novel Approach to Flow Estimation in Tidal Rivers

    Get PDF
    Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858

    Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Glaciology 64 (2018): 730-744, doi:10.1017/jog.2018.66.Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s−1). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s−1. Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.Bromirski, Gerstoft, Chen and Diez were supported by NSF grant PLR 1246151. Stephen was supported by NSF grant PLR-1246416. Wiens, Aster and Nyblade were supported under NSF grants PLR-1142518, 1141916 and 1142126, respectively

    Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves

    Get PDF
    Flexure and extension of ice shelves in response to incident ocean surface gravity waves have been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most modeling studies utilize a plate bending model for the ice, focusing exclusively on flexural gravity waves. Ross Ice shelf seismic data shows not only flexural gravity waves, with dominantly vertical displacements, but also extensional Lamb waves, which propagate much faster with dominantly horizontal displacements. Our objective is to model the full-wave response of ice shelves, including ocean compressibility, ice elasticity, and gravity. Our model is a 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity. We quantify the frequency-dependent excitation of flexural gravity and extensional Lamb waves and provide a quantitative theory for extensional Lamb wave generation by the horizontal force imparted by pressure changes on the vertical ice shelf edge exerted by gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with decreasing frequency, with ratio equal to unity at ~0.001 Hz. Furthermore, in the very long period band (<0.003 Hz), tilt from flexural gravity waves provides an order of magnitude larger contribution to seismometer horizontal components than horizontal displacements from extensional Lamb waves
    corecore